华意电力是一家专业研发生产接地电阻测试仪的厂家,本公司生产的接地电阻测试仪在行业内都广受好评,以打造最具权威的“接地电阻测试仪“高压设备供应商而努力。
接地电阻是表征接地装置有效和可靠性的一项重要参数,但由于接地电阻是以无穷远处为零电位参考点的,想找到既简便又能够较准确的测出接地电阻的方法并非易事,经过国内外学者的不断研究和改进,得出几种较合理的接地电阻测量方法。
(1)两点法:两点法是根据接地电阻的定义直接用伏安法测量,适用于小型接地装置,例如金属管道系统、且管道接头未经绝缘处理的单根垂直接地极的测量。两点法测得的结果为待测接地极和测量电流极的接地电阻之和,因此要求被测接地电阻要远远大于电流极的电阻。这种方法可靠性和误差都较大,现在电力系统已经基本不再使用。
(2)三点法:三点法是在两点法的基础上再增加一个辅助电极,适用于小型接地装置接地电阻的粗略测量。三点法测量接地电阻,采用两个实验电极,基于两点法,分别测量两实验电极和接地装置之间的串联接地电阻,通过求解得出接地极的接地电阻。
(3)补偿法:补偿法测接地电阻60年代被提出,并逐渐得到认可。至今为止,IEEE/GB等多个机构和标准推荐使用,但由于其需要反复测量,电位降曲线的绘制也相对困难,工作量大且不利于现场操作,国内外研究人员通过不懈的努力以电位降法为基础开发出了许多衍生方法,三极法就是其中一种。三极法是目前实际工作中最为常用的接地电阻测量方法,我国目前使用的0.618法和30°法就是其中两种。三极法测量时导通待测接地体,并测得接地体和辅助电压极之间的电位差,从而求得待测接地体的阻值。
在接地电阻的实际测量中会受到许多因素的干扰,如辅助电极、测量电极与被测电极之间的互感,测量导线之间的互感,杂散地电流的影响,土壤的水平分层和垂直分层导致的土壤电阻率变化,为了减小这些干扰对测量结果的影响,研究人员在三极法的基础上有开发出了许多测量方法。
(4)四极法:四极法是在三极法的基础上在被侧电极附近再插入一个辅助电压极,这样可以有效地消除引线上产生的互感。
(5)大电流法:在接地体中,特别是变电站、发电厂的接地网中往往会存在较大的杂散电流,这些电流会对测量结果和计算结果引入误差,降低测量的准确度。 为了消除干扰电流的影响,国内外普遍采用的是大电流法,在测量电流极中通过几十安的大电流,提高信噪比以降低杂散电流对测量结果的影响。
四极法和大电流法虽然可以有效的消除干扰,提高测量准确度,但由于其操作时均需要提供功率较大的电源,一般是将一条配电线路切断为测量设备供电,这样不仅会影响该配电线路上用户的日常工作和生活,而且由于停电时间的限制,不容易实现重复多次的测量。
(6)变频法:变频法是近年来接地电阻测量方法研究的主要内容之一,相比传统方法,其有着明显的优越性。它注入电流小、电压低、安全性好,并且可以有效地消除干扰电流的影响、提高了测量的准确性,它还容易实现多次重复的测量,消除了偶然因素的影响,并且测量效率较高。
接地线和接地体都使用金属材料,统称为接地装置。电力部门按用途不同设有各种接地装置 ,如保护接地、工作接地和防雷保护接地等。
接地装置的接地电阻包括:接地线电阻、接地体电阻、接地体和土壤的接触电阻以及接地电流途径的土壤电阻等。在上述各种电阻中,接地线和接地体的电阻很小,可以忽略不计。这样,接地装置的接地电阻的数值就是接地体对大地零电位点的电压和流经接地体的电流的比值,即:
式中R——接地电阻 Ω
U——电压 V
I——电流 A
接地电阻有冲击接地电阻和工频接地电阻之分。冲击接地电阻是按通过接地体的电流为冲击电流时求得的接地电阻值,它对通过雷电电流时的情况下很有研究价值;而工频接地电阻是按通过接地体的电流为工频电流时求得的接地电阻。一般在不指明时,接地电阻均指工频接地电阻而言,测量出的接地电阻数值也是工频接地电阻值,以便衡量其接地电阻是否符合规程要求。
各种接地装置对工频接地电阻数值都有不同的要求,如表1所示。在接地装置完工后或在运行中,均需按规定进行测量,以鉴别其是否合格。
接地电阻的测量方法很多,这里仅介绍目前应用最普遍的接地电阻测量仪的技术特点及其使用方法。
1. 测试仪技术特点和使用方法
1.1 测试仪的技术特点
(1) 在仪器的检流计回路内,接入了电容C1,使在测试时不受土壤电解电流的影响。发电机输出频率为110~115Hz,并采 用了由BG、D等组成的相敏整流环节,以避免市电杂散电流对测试的影响。
(3) 制造厂生产的仪器,如果设有4个端钮的,还可用来测量土壤电阻率。该仪器还分B组和T组两种类型,B组适用于普通气候条件,T组适用于亚热带的气候条件,即可适合在环境温度为0~50℃和相对湿度为98%以下的气候条件使用。
表1 各种接地装置的工频接地电阻要求值
注:1.R——最干燥季节的接地电阻Ω
I——计算用的接地故障电流 A
对高土壤电阻率地区,接地电阻的要求放宽后,尚应满足接触电压和跨步电压的要求。1.2 测试仪测量简单接地体的接地电阻的操作程序
(1) 使被接地极E′、电位探测针P′和电流探测针C′,依直线彼此相距20m插入地中,且电位探测针P′插于接地极E′和电流探测针C′之间(如图1所示)。
(2) 用专用导线将各极与测试仪的相应端子连接,即E′接E、P′接P和C′接C。
(3) 将仪表放于水平位置,检查检流计的指针是否指于中心线上(即零线),否则可用零位调整器将其调正指于中心线。
(4) 测量开始,先将倍率开关S置于最大倍率,慢慢转动发电机的手柄,同时旋动“测量标度盘”使检流计的指针指于中心线。然后逐渐加快手柄的转速,使其达到120r/min以上,调整“测量标度盘”使指针指于中心线上。
(5) 如“测量标度盘”的读数小于1时,应将“倍率开关”置于较小倍数,再重新调整“测 量标度盘”,以得到正确读数。
(6) 用“测量标度盘”的读数乘以倍率标度的倍数,即为所测的接地电阻值。
1.3 测试仪测量中的注意事项
(1) 当检流计的灵敏度过高时,可将电位探测针插入土壤的深度浅一些;当检流计灵敏度不够时,可沿电位探测针和电流探测针注水,使其所接触的土壤湿润。
(2) 当用0~1/10/100Ω规格的测试仪(具有4个端钮)测量小于1Ω的接地电阻时,应将C2、P2间连片打开,分别用导线联接到被测接地体上(如图2),以消除测量时连接导线电阻的附加误差。
(3) 应避免在雨后立即测量接地电阻。为了保证四季中接地电阻均能符合要求,最好在条件最差的季节进行测量(即土壤干燥时进行)。
(4) 测量时应将接地装置与避雷线断开。
(5) 电流极、电压极应布置在与线路或地下金属管道垂直的方向上。
2 复杂接地体的接地电阻测量
接地网接地电阻测量的精确度,直接关系到正确判断接地网的施工质量,以及对运行中的接地网是否还需进行处理等问题。因此,提高测试的准确性是很重要的,否则将会造成人力、物力的浪费。
接地网接地电阻测量的精确度,关键在于电流、电位探测针的位置选择是否合适,如选择不当,常会引起不可忽视的误差。根据电流、电位探测针的布置方式,测量接地网的接地电阻可有以下几种方法:
2.1 5D/2.5D法
采用5D/2.5D法时,探测针布置如图3所示。从接地网边缘算起,至电位探测针的距离为d12,至电流探测针的距离为d13,通常取d13等于5D(D为接地网最大对角线长度),取d12约为2.5 d13。
测量时,将电位探测针沿接地网与电流探测针之连线方向上移动3次,每次移动距离约为 5% d13,如3次测得的电阻值互相接近,即认为电位探测针的位置选择得合适。
如d13取4~5D有困难,在土壤电阻率较均匀的地区,可取2D,d12取D;在土壤 电阻率不均匀的地区或城区,d13可取3D,d12取1.7D。
2.2 30°夹角法
采用30°夹角法时,探测针布置如图4所示,一般取d12- d13>2D,夹角θ≈3 0°,也应移动电位探测针重复3次测量,使测得的电阻值接近即可。